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Abstract—Based on the two-dimensional (plane-strain) micromechanical fiber interaction frame-
work, effective transverse elastic moduli of two-phase brittle matrix composites containing many
randomly located yet unidirectionally aligned circular fibers are investigated in this paper. The fibers
are characterized as infinitely long and equal-sized inclusions. By employing the local pairwise fiber
interaction formulation coupled with the ensemble-area averaged field equations, the proposed
approximate analysis leads to a novel, higher-order (in fiber volume fraction), and accurate method
for the prediction of effective transverse elastic moduli of two-phase fiber reinforced composites. In
addition, the proposed micromechanical approach is extended to predict the effective transverse
shear velocities of fiber suspensions with randomly located aligned rigid fibers. Comparisons with
experimental data, Hashin’s variational bounds, and improved three-point bounds are also presented
to illustrate the predictive capability of the proposed method for fiber-reinforced composites. ©
1997 Elsevier Science Ltd.

1. INTRODUCTION

Fiber reinforced composites (FRC) have been of interest to researchers and engineers for
several decades owing to their superior mechanical performance over traditional materials.
They provide many advantages such as weight savings, high stiffness/weight and streng-
th/weight ratios, better environmental durability and resistance against corrosion and
humidity, and so on. Applications of fiber reinforced composites have been made to aircraft,
space shuttles, automobiles, sporting goods, and civil engineering structures (Mallick,
1993). Fiber reinforced composites can be described as a matrix reinforced by fibers of
another material. The fibers could be short or long, aligned or randomly oriented, and
periodically or randomly dispersed. Therefore, the prediction and estimation of effective
properties of fiber reinforced composites are of great importance to engineers and
researchers.

In this paper, we consider a linearly elastic isotropic matrix reinforced by linearly
elastic, unidirectionally aligned, randomly located, impenetrable, and infinitely long circular
fibers. The fibers could be isotropic or transversely isotropic. Furthermore, we assume that
the composite specimen is: (&) statistically homogeneous and statistically transversely
isotropic (Hashin, 1965; Ju and Chen, 1994a, 1994b); and (b) with perfect interfacial
bonding between the matrix and fibers. The overall composite is therefore transversely
isotropic. As shown in Fig. 1, the Cartesian coordinate system can be set up with axis 3
parallel to the fiber direction. The overall transverse isotropy can be characterized by five
effective elastic moduli; namely, the plane-strain bulk modulus «*, the transverse shear
modulus u#, the axial Young’s modulus E¥%, the axial Poisson’s ratio v} and the axial shear
modulus p%. Hill (1964) showed that there were only three independent effective elastic
constants for such fibrous composites and the other two constants could be easily deter-
mined.
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Fig. 1. Schematic plot of a composite reinforced by unidirectionally aligned yet randomly located
long circular fibers.

Many theoretical methods have been developed in the literature to predict effective
elastic moduli of fiber reinforced composites; see Hashin (1983), Mura (1987), Zhao and
Weng (1990), and Nemat-Nasser and Meori (1993) for some literature reviews. The first
school, stemming from the pioneering work of Hashin and Rosen (1964) and Hill (1964),
employed variational principles or linear comparison composites to obtain mathematical
lower and upper bounds for effective elastic, transversely isotropic moduli of fiber reinforced
composites. Subsequently, Hashin (1965) derived the variational upper and lower bounds
for the plane strain bulk modulus x*, and the transverse and axial shear moduli u* and
u¥ of fiber reinforced composites with arbitrary transverse phase geometry in terms of
constituent phase elastic moduli and phase volume fractions. Upper and lower bounds on
effective axial Young’s modulus E* and axial Poisson’s ratio v¥ were later derived by
Hashin (1972). “Improved” third-order mathematical bounds, which depend on statistical
microstructural information of random fiber composites, were derived by Silnutzer (1972)
for u%, k* and u¥. Moreover, Milton (1982) proposed the fourth-order bounds for the
effective axial shear modulus u%; see also Torquato and Lado (1992) for detailed cal-
culations on the third-order and fourth-order bounds. Nomura and Chou (1984) also
proposed the third-order bounds based on variational principles and the three-point cor-
relation functions. It is noted that the third-order bounds are narrower than the two-point
bounds of Hashin’s type.

The second school is known as the “effective medium approach’ for micromechanical
estimation of effective moduli of FRC. This category includes the self-consistent method
(Kréner, 1958 ; Budiansky, 1965 ; Hill, 1965), the differential scheme (McLaughlin, 1977;
Hashin, 1988), the generalized self-consistent method (Christensen and Lo, 1979; Chri-
stensen, 1990), and the Mori-Tanaka method (Mori and Tanaka, 1973 ; Taya and Mura,
1981 ; Taya, 1981 ; Weng, 1984, 1990 ; Qiu and Weng, 1990). Nevertheless, effective medium
methods do not depend on particle locations or their relative configurations. By contrast,
the third school aims at direct micromechanics determination of effective properties of
composites with randomly located and interacting inciusions by employing some approxi-
mations, or with certain special geometric configurations for inclusions dispersing in matrix
materials. For example, the second-order formulations with pairwise inter-particle inter-
actions were proposed in the 1970s for perfectly randomly dispersed spherical particles.
Further, a micromechanical higher-order ensemble-volume average formulation was pro-
posed by Ju and Chen (1994a, 1994b) for isotropically randomly located spherical particles.
For aligned fiber reinforced composites, however, no such work was proposed along
the line of the third school. Only local (not overall) plane-strain fiber interactions were
investigated in the literature ; see, e.g., Shioya (1971), Kouris and Tsuchida (1991), Honein
(1991), and Honein et al. (1992, 1994a, 1994b).
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In this paper, we attempt to construct an approximate yet accurate method to account
for inter-fiber interaction effects in fiber reinforced composites. In combination with the
ensemble-area averaged field equations, this work presents a new, higher-order (in fiber
volume fraction ¢), probabilistic approach to estimate effective transverse elastic moduli
of two-phase composites containing unidirectionally aligned yet randomly located circular
fibers.

This paper is organized as follows. In Section 2, approximate solutions for the local
interaction problem of two identical yet randomly located elastic circular fibers embedded
in an elastic matrix are presented. Subsequently, the ensemble-area averaged eigenstrain is
obtained through probabilistic pairwise fiber interaction mechanism in Section 3. Both
uniform and general radial distribution functions are considered. Combining the results
from Sections 2-3 and the governing ensemble-area averaged field equations, effective
transversely isotropic elastic moduli of fiber reinforced composites are derived in Section
4. It is found that our “‘noninteracting solutions” (obtained by dropping the pairwise
fiber interactions) are identical to the variational bounds of Hashin (1965). In addition,
comparisons and simulations between our predictions and other methods as well as exper-
imental data are given in Section 5. By the analogy between the effective transverse shear
modulus and the effective transverse shear viscosity, we extend our predictions to fiber
suspensions with rigid fibers and an incompressible viscous fluid matrix.

2. APPROXIMATE LOCAL SOLUTIONS OF TWO INTERACTING CIRCULAR FIBERS

Shioya (1971) proposed an analysis for an infinitely large, thin plate containing a pair
of circular elastic inhomogeneities and subjected to uniform tensions. Shioya’s method was
based on the Airy’s stress function in the generalized plane stress and employed the bipolar
coordinates together with a method of perturbation. Kouris and Tsuchida (1991) presented
an analytical method to solve the elastic interaction problem between two circular fibers
under the plane strain thermal loading. Their method was based on the displacement
potential approach. Furthermore, Honein (1991, Chp. 7) and Honein et al. (1994a, 1994b)
proposed a general framework to solve the problem of two circular inclusions in plane
elastostatics, subject to arbitrary loading. Honein’s approach hinged on the use of the
Kolosov-Muskhelishvili complex potentials. Although the aforementioned methods are
valuable, they are computationally involved and require numerical calculations of many
terms in some infinite series.

In this section, instead of trying to derive exact local solutions of the randomly
located two circular fibers interaction problem, we attempt to construct simple and accurate
approximate analytical solutions. The proposed local approximate analytical solutions are
quite compact and amenable to the pairwise ensemble-area average approach (to be explai-
ned in Section 3), leading to accurate estimates of effective elastic transverse moduli of two-
phase composites containing many randomly located yet unidirectionally aligned circular
fibers at moderately high volume fractions. For mathematical simplicity, we will assume
that circular fibers are of equal size in what follows.

Let us consider two identical, unidirectionally aligned elastic circular fibers (phase 1)
of radius @ embedded in a homogeneous elastic matrix (phase 0). Since plane strain is
assumed, the inclusion interaction exists only in the same cutting plane as shown in Fig. 2.
In addition, the plane-strain linearly elastic isotropic stiffness tensors for both phases are
denoted by

(Ca)ijkl = lzéijékl_*_”a (51‘k6j1+6il jk)s o= 0’ l ;i’j’ k!l: 1’2 (1)

where A, and y, are the Lamé constants of the phase o material.

Following the eigenstrain concept introduced by Eshelby (1957), an integral equation
governing the distributed eigenstrain e*(x) for a given particle (fiber) configuration and
remote strain field &” was derived in eqn (7) in Ju and Chen (1994a). Within the present
two-fiber context, the integral equation can be rephrased as follows:
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Fig. 2. Schematic diagram for the plane-strain two-fiber interaction problem.
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where x e Q, and £*?(x) is the eigenstrain at x in the i-th fiber domain .. In addition, the
fourth-rank tensor A is defined as

A=(C,—Cy) ' C 3)

and the components of the fourth-rank two-dimensional Green’s function tensor G are
given by (4,7, k,/ = 1,2; Mura, 1987):

1 .
Gijkl(x_x,) = _—F.’jkl(‘—& 2v0,2,2—4vy, —142v, 1 =2v,) 4)
4n(l —vo)r'?

where ' = x—x’ and ' = |r'|. The components of the fourth-rank tensor F—which
depends on its arguments (B8, B,, B,, By, Bs, Bs)—are defined by (m = 1-6) :

Fu(B,) = Bininnn+ B, (Synin;+ d,nini + 6 nin; + 6 ming)
+ B3 nn;+ Bydyuning+ Bs 6,0+ B (0,6, +0,61)  (5)

with the normal vector n” = r’/r’. All physical quantities refer to the Cartesian coordinates,
and the summation convention applies. Moreover, J,; denotes the Kronecker delta and v,
is the Poisson’s ratio of the matrix material.

As indicated in Ju and Chen (1994a, 1994b), the “noninteracting” solution for the
eigenstrain, denoted by £*°, can be obtained by neglecting the last term in the right-hand
side of (2), which represents the interaction effect due to the other fiber. The “non-
interacting’ result is

—Ag* =g +s5:e* 6)

where the two-dimensional Eshelby tensor s is defined as
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s= J G(x—x)dx";x,x’ e, @)
Q;

The components of s depend on the Poisson’s ratio of the matrix (v,) and the shape of the
fiber cross-sectional domain €,. In particular, for a two-dimensional circular domain, the
components of s are

1
Sijit = m {(4"0 - 1)51'151(1 +(3- 4V0)(5ik5ﬂ + 5i15jk)}- ®
0

See Mura (1987) and Appendix A for more details.
By subtracting the noninteracting solution (6) from (2), the effect of inter-fiber inter-
action can be found by solving the following integral equation :

—A:d*(x) = f

@

G(x—x)dx":e* + .[

Q

G(x—x"): d*9(x") dx’

+ f G(x—x"):d*?(x)dx’, forxeQ, i#j (9)
Q.

g

where

d*0(x) = e*O(x) —g*°. (10)

To obtain the higher-order interaction correction for £*(x), one may expand the fourth-
rank tensor G(x—x") in the domain £, with respect to its central point x;; i.e.,

G(x—x) = G(x—x,)— (X" —x;) ' [V, ® G(x—X;}]
+—x) @' —x)]: [Vx ® V., ® G(x—x)]+ -+ (1])

in which the relation
Ve ® G(x—Xx) = -V, ® G(x—Xx") 12)

has been used. From eqns (9) and (11), we have

—A:d*O(x) =J

n/

G(x—x")dx":g* + -[

Q

G(x—x') : d*O(x) dx’
+QG(x—x)) : d*7(x,) - Qa{V, ® G(x—-x,)} : P*¥

+%Qa2{vx ®V, ® G(x—x,)}:Q*"+---  (13)

for xeQ, and i #j (i,j = 1,2). Here, Q = na’ is the cross-sectional area of a single fiber,
and a is its radius. Furthermore, the average fields involved in (13) are defined as follows

a*¥ = éj d*?(x) dx (14)
@
P*0 = (%J\ x—x;)® 4*9(x) dx (15)
Q;
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Q*@s#f (x—X)) ®(x—X)) ® d*%(x) dx. (16)
a Q,

The third rank tensor P*? and the fourth rank tensor Q*? correspond to the dipole
and quadrapole of d*©@ in the domain Q,, respectively. Due to the circular symmetry of
fibers, the leading order of P*? can be shown to be of the order O(p?), rather than O(p?),
by substituting (13) into (15). Here, p = q/r and r is the spacing between the centers of two
interacting fibers. By performing the area average of (13) for the domain Q; and neglecting
those terms of higher order moments in (13), the approximate equations for d*® for the
two-fiber interaction problem can be obtained :

—A:d*0 = GH(x,—x)) :e* +5: 8*? + G (x,—x,) 1 d*? + 0(p®) (17)
where
1 p*
1 — _ - _ - iy P e
G _L,G(x X,) dx LZG(Xl x) dx 8(1—vy) (p H + > H) (18)
1
2 ot ’ _ 2071 472
G _QL‘LZG(X x") dx"dx 80 —vy) (p°H +p°H?) (19)
and the components of H! and H? are given by
Hijy(x) —X;) = 2F;4(—8,2v0,2,2—4dvg, —14+2v,, 1 -2v) (20)
Hizjkl(xl _x2) = 2Ejk1(24s _49 _49 —4’ 15 1) (21)

It is interesting to note that G' in eqn (18) is different from the Eshelby tensor s defined in
(7). One may refer to G' as the “‘exterior point Eshelby tensor” since the integrals in (18)
involves one exterior point (e.g., X,, the center of £,) outside the integration domain (e.g.,
Q).

It should be noted that the leading-order error induced by truncating the higher order
moments in (17) is of the order O(p®), since both P*? and QaV, ® G are of the order O(p?).
Furthermore, we observe from (17) that

d*) = g*@ = g*. (22)
Therefore, the solutions of (17) are
d* = —8(1—v)[T™'-G*]:e* +0(p®) 23)
where
T(x; —x,) = —8(1—vy){—A—-s—G'(X; —x3)}. (24)

The procedure for finding the inverse of the fourth-rank tensor T is given in Appendix
B. The corresponding expression to the order of O(p?) is

T-' =K' +p’L+0(o*) (25)

where
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Kijk! = Ejkl(os 0, 05 0,0(, B) (26)
1 B(1—2v,)
Ly = FE’;‘M(‘L —vo, —2(1 —vo)+ ’ﬁ s 2(1—vy)+ %),,
3—4vy  B(1—wy) 1—2v,
2 at+pBp 2 27)
and
a=(4v0—1)+4(1—v0)-< Fo Mo ) (28)
Ki—Ko Hi—Ho
B =(3—dvo) +4(1—v,)—12 . 9)
Hi—Ho

Here, k,, ; and u,, y, are the plane strain bulk and shear moduli of the matrix and fiber
phases, respectively. Substitution of (25) into (23) then renders the final expression for d*.

= — (K- (PH'+ p H) 2% — p*[L-H'] :2% +0(0°) (30)

Since r > 2a, we have p < %

3. ENSEMBLE-AREA AVERAGED EIGENSTRAINS

In order to obtain the ensemble-average solution of d* within the context of approxi-
mate pair-wise fiber interaction, one has to integrate (30) over all possible positions (x,) of
the second fiber for a given location of the first fiber (x,). The ensemble-average process
can be written as

<a*>(x1) = J a*(x] —X3)P(X,]x,) dx, (31

A-Q

where P(x,]X,) is the conditional probability function for finding the second fiber centered
at x, given the first fiber centered at x,. Moreover, angled brackets signify the ensemble
(probabilistic) average operators. In this paper, we shall consider only two-dimensional,
statistically transversely isotropic and homogeneous two-point probability function
P(x,|x,). The (infinitely large) 2-D transversely isotropic probabilistic (not physical) inte-
gration domain 4 in (31) can therefore be evaluated as circular. It is noted that €, in (31)
defines the probabilistic “‘exclusion zone” for x,.

The two-point conditional probability function P(x,|x;) depends on the 2-D micro-
structure of a composite which in turn depends on the fiber volume fraction and the
underlying manufacturing processes. In the absence of actual manufacturing and micro-
structural evidences, it is often assumed that the 2-D point conditional probability function
takes the following form:

N
—g(@), ifFizl
P(x,|x;) = A (32)

0, otherwise

where N/A is the 2-D number density of fibers in a composite and r is the spacing between
the centers of two fibers (7 = r/2a). Further, g(#) denotes the 2-D transversely isotropic
“radial distribution function”.
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Case I: Uniform radial distribution function

In this case, we have g(#) = 1. This corresponds to the simplest approximation for g(#)
since it tends to underestimate the probability of the second fiber (x,) in the near neigh-
borhood of the first fiber (x,) at high fiber volume fraction. Therefore, this case may be
regarded as the “lower bound” for microstructure and is more suitable for low fiber
concentrations. By substituting eqn (30) and (32) into eqn (31), the explicit expression for
{d*)(x,) can be rephrased as

0 2n o0 n
Ad*H(x,) = —%K" : {J pzrj H'(n) d9dr+J p“rJ‘2 H>(n) der}:s*"

2a 0 2a 0

- %/.Uwp‘*rrn[L(n) -H'(n)] d6 dr} g%+ (33)

where n is the normal vector (i.e., n = r/r with r = x,—x,). In addition, the following
identities can be easily derived :

2n
J nn,df = md,; (34

0

2r
f n e, 49 = g(a,,ék,+5ika,,+5i,5jk). (39)
0

It is straightforward to verify that the integrals of H' and H? in the first line of (33) are
identically zero.

The (approximate) ensemble-area averaged eigenstrain tensor can now be obtained by
substituting the expression for L and H' into the integral of (33) and utilizing the identities
(34)-(35), together with the definition of d*® in (14). The final expression (based on (32))
reads:

(e*y =T:¢e* (36)

where the components of the isotropic tensor I are rendered by

s = 718500+ 728+ 6,0 1) 37
in which
¢ B(1—2v,)
o= ——| =24 == 38
’){] 4ﬁ2 + OH-ﬂ ( )

V2= 2 4‘81_

1 ¢ [2+ ﬁ(i:LZﬁVo)} (39)

It is noticed that, in deriving (36), the ensemble average <{d*>(x,) is a constant for any
particle centered at x,—a consequence of (22) or (17). Clearly, eqn (36) is a truly closed-
form analytical formula.

Case II: General radial distribution function
For a general 2-D transversely isotropic radial distribution function g{(r) (which
depends on the fiber volume fraction ¢), the ensemble integration of (30) leads to
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— N[ 2
d*>) = —J rg(r) |:f d* d6:| dr (40)
A 2a 0
or
- N2n fo gt
N o S ko bl
@ Aﬁzw.a xJza 9 dr (41)
where
Wikt = €100+ £,(850,+ 840 ,) (42)
_ B(1--2v,)
¢ = 2+_oc+—ﬁ (43)
B(1—2v,)
T L1
¢ + o (44)
Furthermore, we have
0 a4 1
J r—39(r) dr = azfz pg(p)dp = a*Y(g). (45)
2a 0

Therefore, (d*) and I' can be rephrased, respectively, as

(d*) = 3? Y(g)W:g*° (46)
B
2¢
F=I+~/}~2~*Y(g)WEyl(g)1®1-+—2y2(q)I 47
where

_2 o PO =2v)
%(q)—ﬂ2 Y(q)[ 2+ oy ] (48)

1 2¢ B(1—2v)
72(9) =§+’ﬂ;Y(9) [2+ a+ﬁﬁ]' 49)

Consequently, the “interaction-effect tensor’” I'' can be explicitly computed for any 2-D
transversely isotropic radial distribution function at any specified fiber volume fraction ¢.

For example, at higher fiber volume fractions, it is sometimes assumed that the two-
point conditional probability function obeys the so-called thermodynamic “equilibrium
radial distribution function” (ERDF) as follows:

9() = HG=DI1+ AP (50)

where (recalling that 7 = r/2a; Hansen and McDonald (1986), Torquato and Lado (1992))
. 4 o f ) fZ 1/2 .

A(F) —;I—|:7r—2sm <§)—r<l—z> HQ2—7) (5D

0, x<0

H(x) = {1 o (52)
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The integration in eqn (45) for this ERDF case can be easily obtained by numerical
calculation:

1/2

Y(g) = J pg(p)dp = 51; +0.0865¢. (53)

0

On the other hand, for a statistically uniform radial distribution function, we have g = 1
and thus Y = 1/8. Therefore, Case I is easily recovered.

4. EFFECTIVE TRANSVERSE ELASTIC MODULI OF TWO-PHASE COMPOSITES
CONTAINING UNIDIRECTIONALY ALIGNED CIRCULAR FIBERS

We now focus on the derivation of effective transverse elastic moduli of composites
containing randomly located, unidirectionally aligned circular fibers. We shall employ the
pairwise interaction solutions for {&*) (from Section 3) and other ensemble-area averaged
field equations. The proposed procedure can be readily modified to include circular fibers
of different sizes and/or elastic properties. In what follows, angle brackets denoting the
ensemble-average operators will be dropped for simplicity.

In accord with Ju and Chen (1994a) and Zhao et a/. (1989), we have the following
relations governing the averaged stress (§), the averaged strain (), the uniform remote
strain (¢°) and the averaged eigenstrain (§*) :

= C,:(£—¢pF*) (54)
&=+ ¢s: g% (55)

Upon substitution of the solution of #* in (36) or (47) into (55) and utilizing the relation
between & and &*° given by (6), the relation between the averaged eigenstrain £* and the
averaged strain & is expressed as

=[-(—A—s+¢s'T)']:& (56)

The above expression is valid for any 2-D transversely isotropic radial distribution function
g(r).

Moreover, substitution of (56) into (54) renders the effective stiffness C* relating &
and &:

C*=Co {I—¢T-(—A—s+¢s-T)"'}. (57)

Since all the fourth-rank tensors on the right-hand side of (57) are isotropic in two-
dimension, the effective stiffness tensor C* for this two-phase composite is also isotropic in
2-D {or, equivalently transversely isotropic in three-dimension). Accordingly, the effective
plane-strain bulk modulus «* and shear modulus ¥ can be explicitly evaluated :

8p(1 —vo)(y) +72)
* = K, 8
e {H (a+ﬁ)-4¢(vl+vz)} (58)
8P (1—vo)y,
¥ =y vy — . 9
K g {1+ﬁ_2(3—4vo)¢?2} )

It should be noted that the definition of the effective plane-strain bulk modulus is
k> = A*+ ¥, where i* and u¥ are the effective Lamé constants. In addition, y, and y, are
previously defined by (48)—(49). In particular, we have



Effective transverse elastic moduli 951

5 for uniform radial distribution
Y(g) = (60)

1+0.0865¢, for equilibrium radial distribution’

We shall now consider some interesting special cases.

Case I: Noninteracting solution. If near-field pairwise fiber interactions are totally
neglected, we obtain the so-called “noninteracting” approximation for effective transverse
elastic properties. The noninteracting solution can be easily acquired by dropping the
pairwise interaction effects; i.e., let I' = I with y, = 0 and y, = 1/2. Accordingly, the plane-
strain effective bulk modulus x* and transverse shear modulus u* reduce to:

K¥ =Ko |14+ ¢ (61)
o (1)
K1 —Ko Ko+ Ho
¢
*
M=o ) 1+ e o) Ko+ 2110 (62)
Hi—Ho 2(xo — o)

It is observed that these “‘noninteracting’ expressions are identical to the variational lower
bounds (4.25) and (4.27) of Hashin (1965); see also Hill (1964) for x* bounds.

Case II: Rigid fibers. For an incompressible elastic matrix containing randomly located
and aligned identical rigid circular fibers, the proposed interacting solution renders the
following effective transverse shear modulus:

1+8Y¥(g)p
f = podl42¢p—— 2T L
: “{H ¢1—¢—8Y@)¢2} “

For the special cases of uniform and equilibrium radial distribution functions (RDFs), the
singularity points in (63) occur at ¢ = 0.618 and 0.562, respectively. Furthermore, the
Taylor’s series expansion of (63) with respect to ¢ renders

wr= o {1+2¢+2[1+8Y(9)lo* +2[1+16Y(9)ld’° + O(¢*)}. (64)

Equation (64) reduces to

pE = {1420 +4¢> +64° + 0(¢")} (65)

for the uniform RDF, and

1= mo{1+2¢+49*+7.384¢° + 0(¢*)} (66)

for the equilibrium RDF. The coefficient for the O(¢) is 2 which is consistent with the
dilute result of Eshelby (1957} ; see also Christensen (1993).

Case I11: Cylindrical voids. For an incompressible matrix containing randomly located
and aligned identical cylindrical voids, the proposed interacting solution leads to the
following effective plane-strain bulk modulus and transverse shear modulus:
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1
L R | 67
i ”{4¢2Y(g)+¢ } 7
14104 Y(g)
#= 0 1-2 -
g ”{ ¢1+¢+10¢2Y(g)} 9

5. SOME COMPARISONS AND SIMULATIONS

In order to illustrate the potential of the proposed micromechanical framework, we
now compare our analytical predictions with Hill’s (1964) and Hashin’s (1965, 1972) two-
point bounds, Silnutzer’s (1972) three-point bounds (Milton (1982), Torquato and Lado
(1992)), and limited available experimental data of Uemura e? al. (1968). For demonstration
purposes, we will consider the (statistically transversely isotropic) uniform and equilibrium
RDFs. Following Kondo and Saito (1986), we will consider the following constituent
elastic phase properties for the glass fiber reinforced epoxy matrix composite ; £, = 11,660
kgf/mm?, v; = 0.22 (glass fiber) and E, = 550 kgf/mm?, v, = 0.35 (epoxy resin).

Figures 3 and 4 show the predicted plane-strain effective (normalized) bulk modulus
k*/K, and effective (normalized) transverse shear modulus u%/y, of the glass-epoxy com-
posites at various fiber volume fractions ¢. We plot the theoretical predictions in Figs 3
and 4 based on Hashin’s (1965) second-order bounds, Silnutzer’s (1972) third-order bounds
(with the equilibrium RDF following Torquato and Lado (1992)), and the proposed
eqns (58)—(59) with the uniform and radial RDFs, respectively. Clearly, our analytical
predictions are well within the Hashin’s (1965) two-point bounds and Silnutzer’s (1972)
three-point bounds. We recall that our “non-interacting solutions™ in the previous section

40 —mr———p T T

*5\40 20 |

1.0 B

---------- Hashin's bounds -
~ — - Silnutzer’s three-point bounds ]
- ~—— Predictions from Egn. (58) 1
[ ]
0'0 nnnnnnnn f IR S S T W WO T 1 ) T S T S R ) U ST U T ST S T I VA N A S S B S ]
0.0 0.1 0.2 0.3 0.4 0.5

Fiber Volume Fraction ¢

Fig. 3. The effective plane-strain bulk modulus vs. the fiber volume fraction ¢. The upper and
lower solid lines correspond to the present method with the equilibrium and the uniform RDFs,
respectively.
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Fig. 4. The effective transverse shear modulus vs the fiber volume fraction ¢. The upper and lower
solid lines correspond to the present method with the equilibrium and uniform RDFs, respectively.

coincide precisely with Hashin’s (1965) lower bounds for k* and u¥ of the reinforced elastic
composites.

The proposed micromechanical plane strain framework cannot predict the effective
axial (out-of-plane) Young’s modulus E% and effective axial Poisson’s ratio v¥, On the
other hand, bounds on effective axial EX and v* are available from Hashin (1972):

ﬂ‘ﬁo("l — Vo_)i

Ef=Epo+E ¢+ (69)
b b 1
Ko Ky Ho
1 1
OPo(vy - Vo)(K_O - K_1>
Vi=voPot+v P+ (70)
_(B ‘+__ ?9_ + ﬁl—_

Ko K1 Ho

where ¢y = 1 — ¢. According to the calculations of Kondo and Saito (1986) and the present
authors, eqns (69) and (70) render highly accurate predictions because the lower and upper
bounds of Hashin (1972) are extremely close to each other. Even the simple mixture rule
(the first two terms on the right-hand side of (69)-(70)) provides fairly good estimates for
effective axial £% and v¥. Therefore, the out-of-plane fiber interaction effects are insignificant
as far as E% and v¥ are concerned.
Consequently, the effective transverse Young’s modulus E£% and Poisson’s ratio v¥ can
be predicted by combining our eqns (58)—(59) for k* and u¥ and (69)—(70) for E% and v¥:
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k¥t

= k¥t 7n
K*~yut
vE= K*W; (72)
where
4ykTyck
V=14 (73)

The above expressions were given by Hashin and Rosen (1964) ; see eqns (17)—(18) therein.
Figure 5 depicts the predictions for the effective transverse Young’s modulus E% according
to the proposed eqn (58)—(59) and (71), and the Hashin’s (1972) bounds. Both the uniform
and equilibrium RDFs are employed to illustrate the proposed model. In addition, the
experimental data of Uemura et al. (1968) for the glass-epoxy composites are plotted in
Figure 5 for comparison purpose. It is observed that the proposed formulation compares
very well with experimental data for ¢ up to about 55%. For fiber volume fraction ¢
greater than 60%, micro-defects may exist widely in experimental specimens. Therefore,
interface debonding as well as fracture may significantly affect the overall mechanical
behavior of composites at very dense fibre concentrations. Furthermore, higher-order fiber
interactions would need to be considered for ¢ = 60% by means of rigorous micro-
mechanics and the ensemble-area averaging procedure.

It is also interesting to illustrate the potential of the proposed method in predicting
the effective elastic moduli of brittle elastic matrix containing randomly located yet unidi-
rectionally aligned cylindrical veids. In such event, we simply have k, = 0 and g, = 0 for

6.0
50 |
4.0 |
(3
H 30
|
=
20 |
F | Hashin’s bounds ]
10 F —— Predictions from Eqn. (71) .
[ @ Experimental data (Uemura, 1968) ]
0.0' ......... [P [N | Y I
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fiber Volume Fraction ¢

Fig. 5. The effective transverse Young's modulus vs the fiber volume fraction ¢. The upper and
lower solid lines correspond to the present method with the equilibrium and uniform RDFs,
respectively.
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Fig. 6. The effective plane-strain bulk modulus vs. the void volume fraction ¢ for porous materials
containing aligned cylindrical voids. The lower and upper solid lines correspond to the present
method with the equilibrium and uniform RDFs, respectively.

the inclusion phase. We shall assume that E, = 0.75x 10° bars and v, = 0.23 for the glass
matrix. Figure 6 compares the analytical predictions of the effective (normalized) plane-
strain bulk modulus x*/x, produced by the Hashin’s (1965) upper bound, Silnutzer’s {1972)
3-point upper bound, and the proposed method (by using the uniform and equilibrium
RDFs). No available experimental data are found at this time for comparison.

As indicated by Christensen (1993), the manufacturing operations for fiber composite
materials often involve the flow behavior of the composite system as viscous fluid suspen-
sions. The matrix phase is usually treated as incompressible in its fluid state, and the aligned
fibers are treated as rigid (in comparison with the matrix). Therefore, the (rheological)
effective transverse shear viscosity #¥ of these composite melts can be represented by the
proposed eqn (63), with u¥ and g, replaced by n% and #,. Figure 7 compares the theoretical
predictions from Hashin’s (1965) lower bound, Silnutzer’s (1972) three-point lower bound
(with the equilibrium RDF), Christensen’s (1990, 1993) generalized self-consistent method
(GSCM), and the proposed micromechanical interaction formulation (with the uniform
and equilibrium RDFs). We observe that significant differences exist between our pre-
dictions and the other two bounds for ¢ greater than 30%. No experimental data are
available in the open literature at this time for us to compare the analytical predictions.
However, Ju and Chen (1994b) presented detailed experimental comparisons against the
authors’ micromechanical interaction formulation, the three-point lower bounds, and other
methods for the effective shear viscosity vs. the particle volume fraction ¢ of colloidal
suspensions containing an incompressible fluid matrix and randomly dispersed spherical
rigid particles. Ju and Chen (1994b, Figure 6) showed that their micromechanical interaction
formulation performed quite well while the three-point bound predictions did not fare
well for ¢ greater than 30% in the colloidal suspensions. Although different in values,
Christensen’s (1990, 1993) predictions exhibit similar trend as our analytical predictions
concerning effective shear viscosities #¥ vs ¢ of circular fibers or spherical particles.
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Fig. 7. The effective relative transverse shear viscosity vs. the fiber volume fraction ¢. The upper
and lower solid lines correspond to the present method with the equilibrium and uniform RDFs,
respectively.

6. CONCLUSION

Based on the governing micromechanical field equations and the approximate pairwise
fiber interaction solutions, a new micromechanical ensemble-area average approach is
presented to predict effective transverse elastic moduli of linear two-phase composites
containing randomly located yet aligned circular fibers. The proposed framework can be
modified to accommodate circular fibers of different sizes and/or elastic properties. The
ensemble-area averaged eigenstrains in fibers are approximately evaluated by eqn (36) or
(47) through the pairwise inter-fiber interactions. Hence, a compact analytical formula (57)
is derived. The proposed closed-form predictions are compared with Hashin’s (1965) two-
point bounds, Silnutzer’s (1972) three-point bounds, and some available experimental data.
These comparisons and simulations encompass fiber reinforced elastic composites, elastic
matrix with randomly located cylindrical voids, and aligned viscous fiber suspensions.
No Monte Carlo simulations nor finite element calculations are needed in the proposed
framework.

The authors are currently working on the extension of the proposed method to predict
the effective elastoplastic behavior of two-phase ductile matrix composites containing unidi-
rectionally aligned yet randomly located elastic fibers. The methods proposed by Ju and
Chen (1994c¢) and Ju and Tseng (1996, 1997) will be adopted to provide micromechanical
ensemble-area averaged estimates.
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APPENDIX A: PLANE STRAIN ESHELBY’S TENSOR FOR A CIRCULAR INCLUSION

According to the Eshelby’s solution, the elastic displacement field due to inclusion in an isotropic infinite
body reads

w(x) = — ,kmeinf Gyu(x—x)dx’ (74)

Q

where the second rank plane-strain Green’s function is given by Mura (1987):

’

n 1 T x)5=x) ,
Gx—x") = &l —Vo)/l0|: T —(3—4vy)d;Injx —x ||]. 75)

By taking the derivative of G,(x —x’) in eqn (75) with respect to x, and substituting the result into eqn (74), we
arrive at

eﬁ( 27 dX’
u(x}) = — G _vo)L i) x| (76)
where
G = (1—=2vo) Syl + 8il;— 8} + 2011, )

and 1 =(x’—x)/|x’—x{. When the point x is located inside the inclusion, the strain and stress fields bacome
uniform for the interior points. Moreover, eqn (76) can be integrated explicitly. The differential element dx’ can
be written as

dx’ = rdrdf (78)

where r = ||x’—x|| and d@ is the differential angle centered at point X(x/, x,) ; see Fig. 8 for a schematic plot of a
circular inclusion. Upon integration with respect to r, eqn (76) becomes

SN, Y N

Fig. 8. The domain of a fiber cross-section .
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® = - —F [0 do 79
u;(x) = ~amli—v) ), r{gq (1) d6. ™)

Here, r(l) is the positive root of the following equation

O )+ (x + 1) = a2, (80)
Therefore, we have
_ S e
r(l)——h+ ;;+h (81)
where
B+
a
f= Lix +bhx, 83)
al
2 2
e=1- DX (84)
a2

Substituting eqn (81) into eqn (79), we find that the integration involving the . /f?/4% + e/h term vanishes because
it is even in I while g, is odd in I. Consequently, we obtain

X6 = ijgimn ()] d

W=y ), on ¥ )
and
_ &k A+ MG
) = J i g9 (86)
where
A = Ljad. (87)

According to the definition of Eshelby’s tensor ¢; = 5,;,e%, we then arrive at

1 JQ" )-iy]kl" jgikldg. (88)

S = g (T =vg) |, A

Finally, the plane-strain Eshelby’s tensor for a circular inclusion can be expressed as

Sikt = m [(dvo — 1)3y0,+ B—4ve ) (848 + a0 )] (89

APPENDIX B: THE INVERSE OF A FOURTH-RANK TENSOR F
The product between two 2-D fourth-rank tensors F(4,,) and F(B,), m = 1 to 6, can be shown to follow

Equ(Am)qukl(Bm) = Ejkl(cm) (90)

where i, J, k, I, p, ¢ = 1, 2, F is defined in (5), and

C\ = A\(B, +4B, + By +2B,) +44,(B, + 2B, + B,) + A,(B, + 4B, + 2B;) + 2A4B, o1
C, = 24,(B, + Bg) + 244 B, ©2)

C; = Ay(B, +4B, + B; +2B,) + A;(B, +4B,+2B,) +24,B; 93)

Cy = A\(By+Bs)+4A4,(B,+ Bs)+ Ay (B, +2Bs +2B.) + 24 B, 94)

Cs = A3(By+ Bs) + As(Bs+2B; +2B.) + 24, Bs (95)
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Ce = 2A44Bs. (96)

One should note that the tensorial product of F(4,,) and F(B,,) does not commute in general, i.e.,
F(4,) F(B,) # F(B,) F(4,). on
To find the inverse of F, we first recall the definition of the fourth-rank unit tensor:
Tui = H848,+846,). (98)

Denoting now by F(A4,,) the inverse tensor of F(B,,), we can derive the components of F(4,,) = F~'(B,,) by solving
the system of eqns (91)-(96) with the following arguments in F(C,) :

C|:C2=C3=C4=C5 =:0, C6=% (99)
The results are
A, =L (100)
¢ 4B,
B,
Ay = —————r 101
' = " 3B,(8,+ By (1o
and
A —2A¢B,—44,(B,+2B,+B
{ l}:D"{ 681 2(B, 2 3)} (102)
A, —244B,—44,(B,+B;)
A ~2A4.B
{ 3}:1)-‘{ ¢ 3} (103)
A —2A44B;s
where

(104)

[B, +4B,+B,+2B, B, +4B, +233}
B,+8B; B,+2B;+2B |



